

1. Symmetric Matrix Completion Problem

1	?	?	1
?	?	6	?
?	6	?	2
1	?	2	1

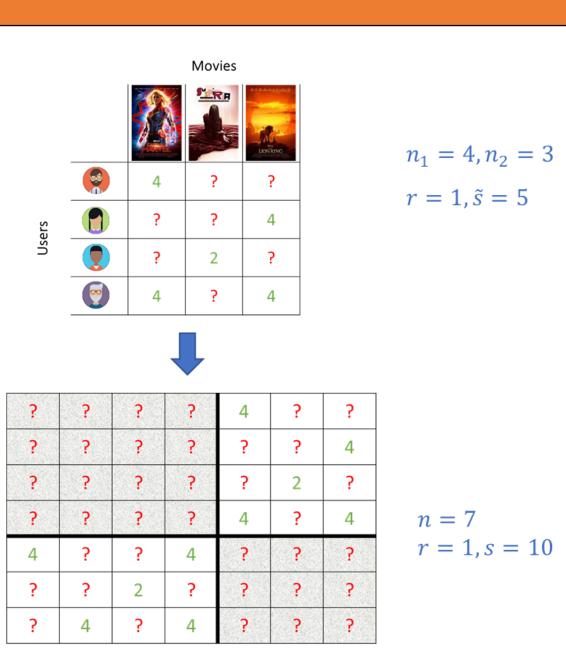
n = 4, r = 1, s = 8

- Positive semidefinite (PSD) rank-r matrix $M \in \mathbb{R}^{n \times n}$ • $M = XX^T$, where $X \in \mathbb{R}^{n \times r}$
- Sampling set Ω with cardinality s • Ω is symmetric!

find	M_{ij} for $(i, j) \in \Omega^{c}$
given	$rank(M) \leq r$
and	M_{ij} for $(i, j) \in \Omega$

2. Motivation

- Maximum likelihood estimation of covariance matrices in Gaussian graphical models
- Density matrix completion in quantum state tomography
- Low-rank approximation of correlation matrices in finance and risk management
- Solving non-symmetric case using symmetric case via *semidefinite lifting*



3. Existing Approaches

Approach	Problem formulation	Existing algorithms
Linearly-constrained nuclear norm minimization	$\min_{Z \in \mathbb{R}^{n \times n}} \ Z\ _* \text{ s. t. } \sum_{(i,j) \in \Omega} Z_{ij} - M_{ij} = 0$	Iterative soft thresholdin APG [5], CGD [6]
Rank-constrained least squares	$\min_{Z \in \mathbb{R}^{n \times n}} \sum_{(i,j) \in \Omega} (Z_{ij} - M_{ij})^2 \text{ s. t. } rank(Z) \le r$	Iterative hard thresholdir NIHT [8], Accelerated IHT
Low-rank factorization	$\min_{X \in \mathbb{R}^{n \times r}} \sum_{(i,j) \in \Omega} \left((XX^T)_{ij} - M_{ij} \right)^2$	Gradient descent [11,12] gradient descent [13]

Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix Completion via Gradient Descent

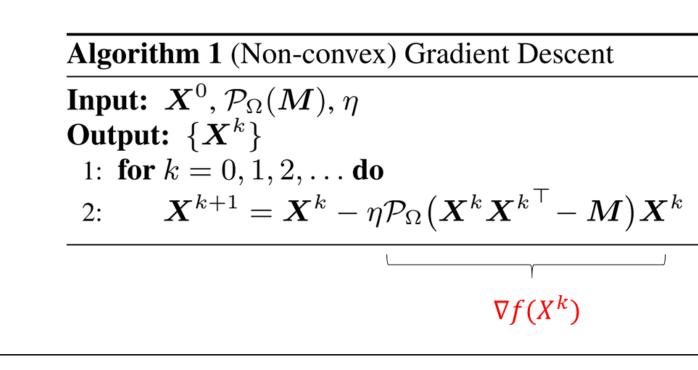
Trung Vu and Raviv Raich School of EECS, Oregon State University, Corvallis, OR 97331-5501, USA {vutru,raich}@eecs.oregonstate.edu

4. Gradient Descei

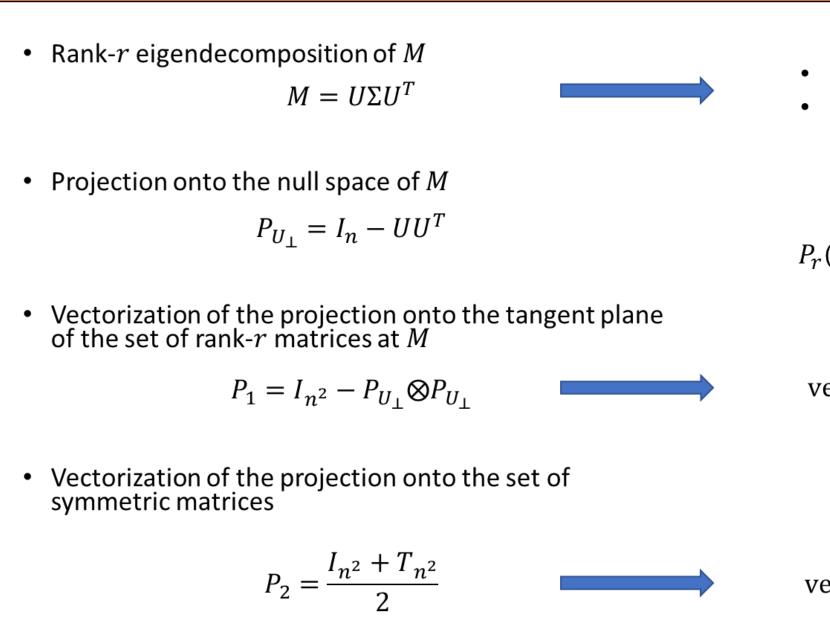
SMCP as unconstrained non-convex optimizat

 $\min_{X \in \mathbb{R}^{n \times r}} \frac{1}{4} \| P_{\Omega}(XX^T - M) \|_F^2$

f(X)



5. Local Convergence Analysis - Preliminaries



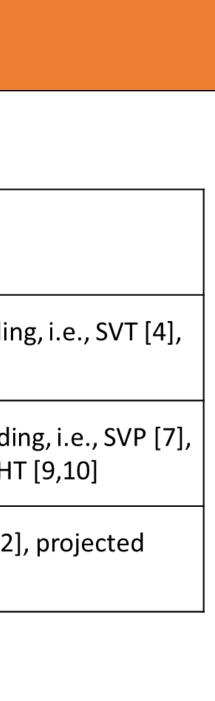
6. A Recursion on the Error

Recall the GD update

$$X^{k+1} = X^k - \eta P_{\Omega} \left(X^k X^{k^T} - M \right) X^k$$

- Let $E^k = X^k X^k^T M$ be the error matrix $\Rightarrow E^{k+1} = E^k - \eta \left(P_{\Omega}(E^k)M + MP_{\Omega}(E^k) \right) + O\left(\| I \| E^k \right)$
- Let $e^k = \operatorname{vec}(E^k)$ be the error vector

$$\Rightarrow e^{k+1} = (I_{n^2} - \eta(M \oplus M)S^T S)e^k + O\left(\|e^k\|\right)$$



nt (GD)
tion	
2	$[\mathcal{P}_{\Omega}(\boldsymbol{Z})]_{ij} = \begin{cases} Z_{ij} & \text{if } (i,j) \in \Omega, \\ 0 & \text{otherwise.} \end{cases}$
	Loose <i>global</i> convergence analysis!

• $U \in \mathbb{R}^{n \times r}$ is a semi-orthogonal matrix • $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix

$$(M+E) - M = \underbrace{E - P_{U_{\perp}} E P_{U_{\perp}}}_{\nabla P_r(M) \cdot E} + O(||E||_F^2)$$

 $\operatorname{vec}(E - P_{U_{\perp}}EP_{U_{\perp}}) = P_{1}\operatorname{vec}(E)$

$$\operatorname{ec}\left(\frac{E+E^{T}}{2}\right) = P_{2}\operatorname{vec}(E)$$

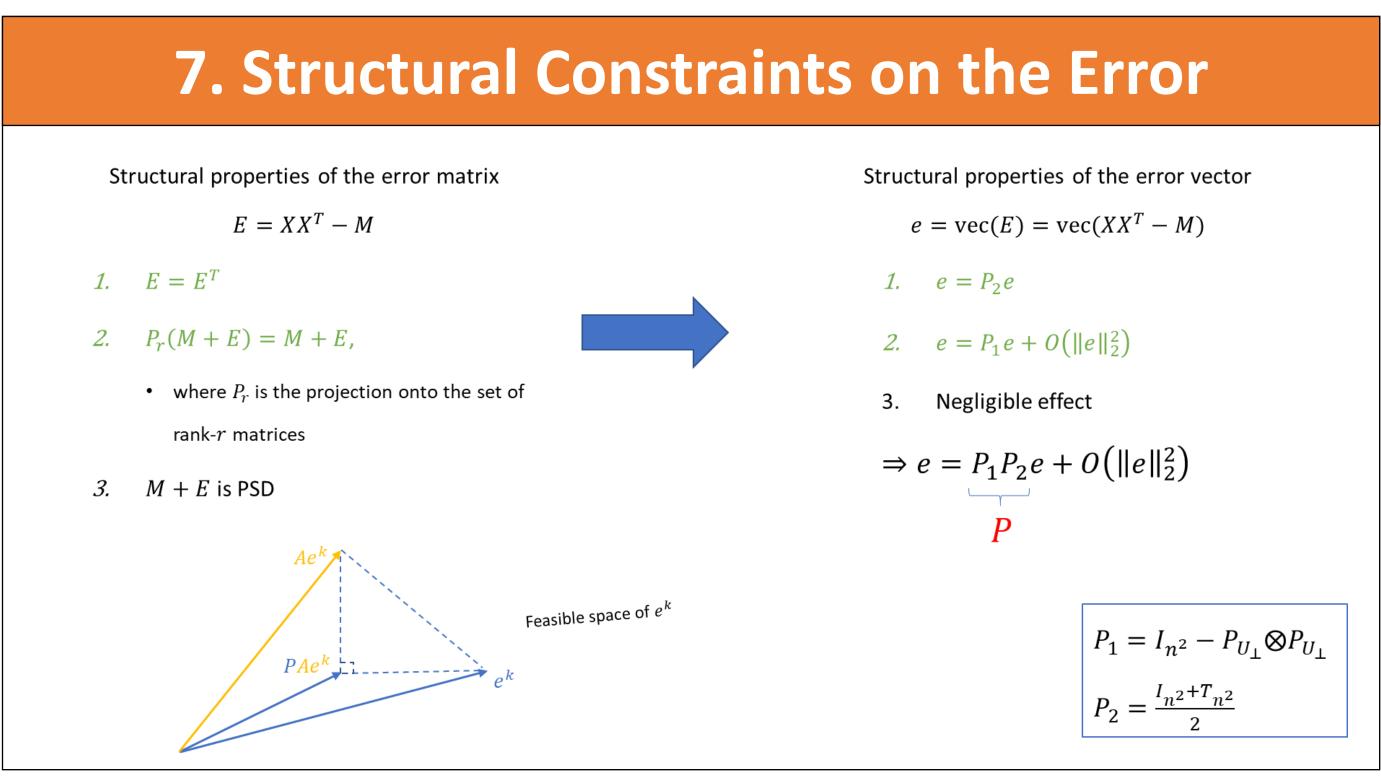
$$M \oplus M = M \otimes I_n + I_n \otimes M$$

$$S \in \mathbb{R}^{s \times n^2} : \begin{cases} SS^T = I_s \\ vec(P_{\Omega}(E)) = S^T Svec(E) \end{cases}$$

$$|E^k||_F^2$$

$$Av = v \text{ for all } v \text{ s.t. } Sv = 0$$

$$|_2^2 \end{pmatrix} \Rightarrow \rho(A) \ge 1!$$

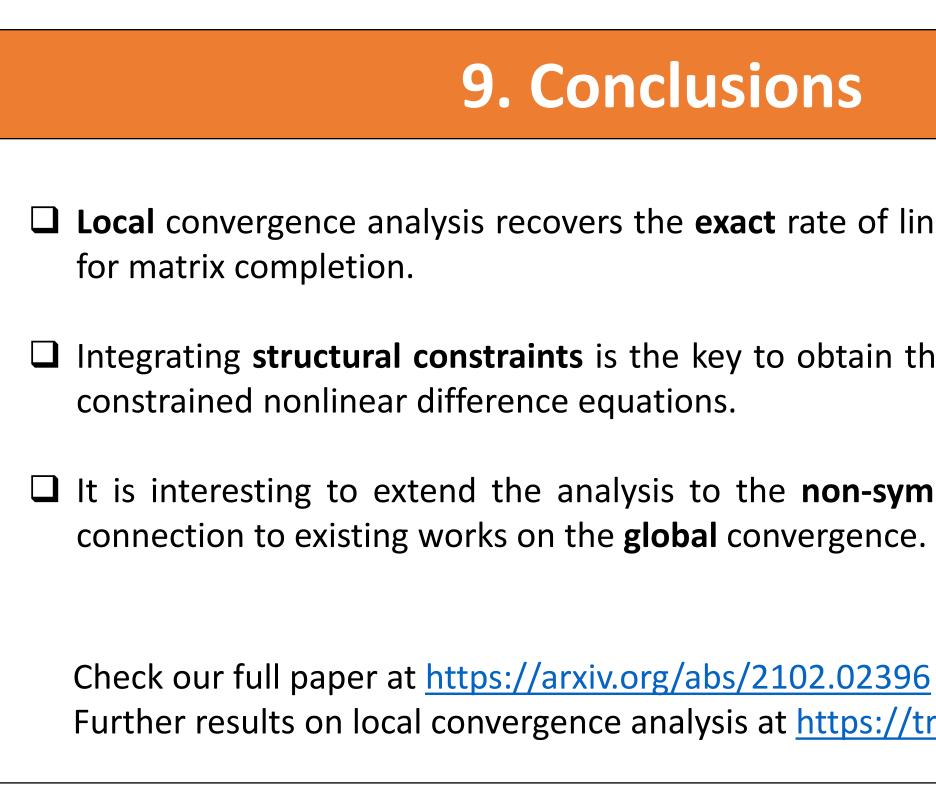


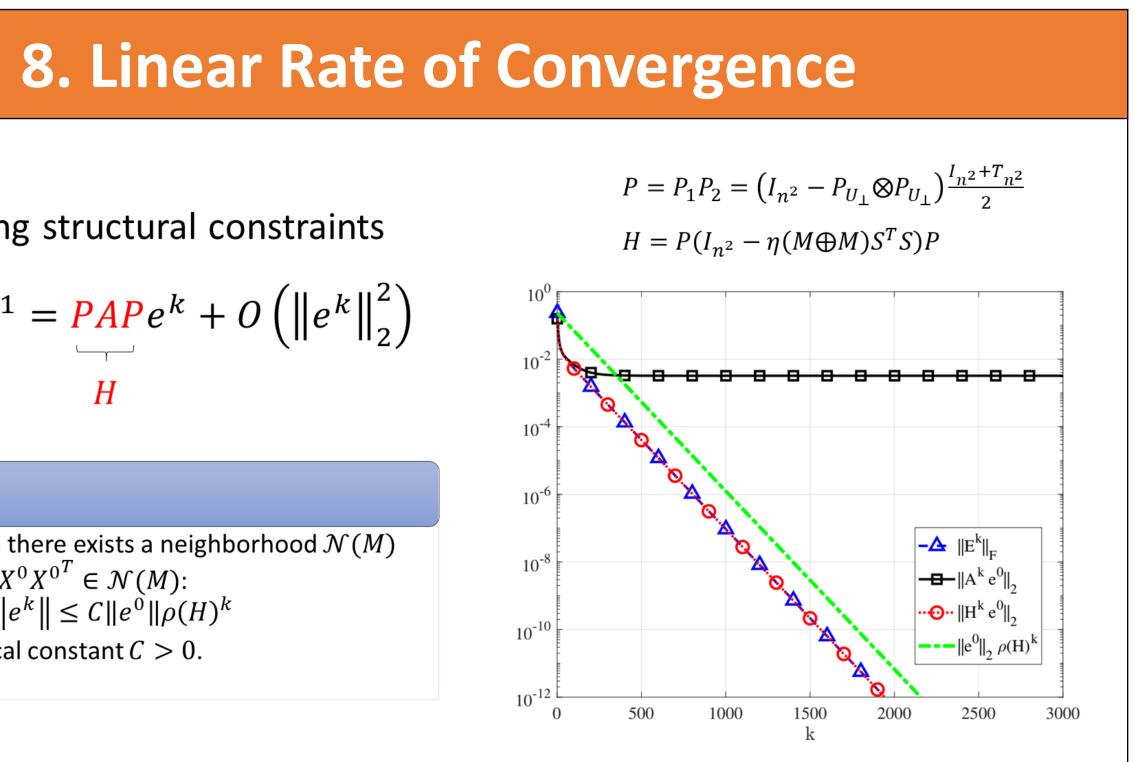
• Integrating structural constraints

$$e^{k+1} = \frac{PAP}{PAP}e^{k} + O\left(\frac{H}{H}\right)$$

Theorem

If $\rho(H) < 1$, then there exists a neighborhood $\mathcal{N}(M)$ such that for any $X^0 X^0^T \in \mathcal{N}(M)$: $\left\|e^k\right\| \le C \left\|e^0\right\| \rho(H)^k$ for some numerical constant C > 0.





9. Conclusions

Local convergence analysis recovers the **exact** rate of linear convergence of GD

□ Integrating structural constraints is the key to obtain the convergence rate for

□ It is interesting to extend the analysis to the **non-symmetric** case and make

Further results on local convergence analysis at <u>https://trungvietvu.github.io/</u>